Opposing Wnt Pathways Orient Cell Polarity during Organogenesis
نویسندگان
چکیده
منابع مشابه
Opposing Wnt Pathways Orient Cell Polarity during Organogenesis
The orientation of asymmetric cell division contributes to the organization of cells within a tissue or organ. For example, mirror-image symmetry of the C. elegans vulva is achieved by the opposite division orientation of the vulval precursor cells (VPCs) flanking the axis of symmetry. We characterized the molecular mechanisms contributing to this division pattern. Wnts MOM-2 and LIN-44 are exp...
متن کاملDistinct Wnt signaling pathways have opposing roles in appendage regeneration.
In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during em...
متن کاملSignaling pathways in cell polarity.
A key function of signal transduction during cell polarization is the creation of spatially segregated regions of the cell cortex that possess different lipid and protein compositions and have distinct functions. Polarity can be initiated spontaneously or in response to signaling inputs from adjacent cells or soluble factors and is stabilized by positive-feedback loops. A conserved group of pro...
متن کاملNoncanonical Wnt signaling pathways in C. elegans converge on POP-1/TCF and control cell polarity.
In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway controls a cell migration whereas noncanonical Wnt pathways control the polarities of individual cells. Despite the differences in the identities and interactions among canonical and noncanonical Wnt pathway components, as well as the processes they regulate, almost all C. elegans Wnt pathways involve the sole Tcf homolog...
متن کاملCdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity
Scratch-induced disruption of cultured monolayers induces polarity in front row cells that can be visualized by spatially localized polymerization of actin at the front of the cell and reorientation of the centrosome/Golgi to face the leading edge. We previously reported that centrosomal reorientation and microtubule polarization depend on a Cdc42-regulated signal transduction pathway involving...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cell
سال: 2008
ISSN: 0092-8674
DOI: 10.1016/j.cell.2008.06.026